Mathematics – Statistics Theory
Scientific paper
2006-03-03
Annals of Statistics 2005, Vol. 33, No. 6, 2655-2694
Mathematics
Statistics Theory
Published at http://dx.doi.org/10.1214/009053605000000561 in the Annals of Statistics (http://www.imstat.org/aos/) by the Inst
Scientific paper
10.1214/009053605000000561
We solve the problem of constructing an asymptotic global confidence region for the means and the covariance matrices of the reproduction distributions involved in a supercritical multitype branching process. Our approach is based on a central limit theorem associated with a quadratic law of large numbers performed by the maximum likelihood or the multidimensional Lotka--Nagaev estimator of the reproduction law means. The extension of this approach to the least squares estimator of the mean matrix is also briefly discussed. On r\'{e}sout le probl\`{e}me de construction d'une r\'{e}gion de confiance asymptotique et globale pour les moyennes et les matrices de covariance des lois de reproduction d'un processus de branchement multitype et supercritique. Notre approche est bas\'{e}e sur un th\'{e}or\`{e}me de limite centrale associ\'{e} \`{a} une loi forte quadratique v\'{e}rifi\'{e}e par l'estimateur du maximum de vraisemblance ou l'estimateur multidimensionnel de Lotka--Nagaev des moyennes des lois de reproduction. L'extension de cette approche \`{a} l'estimateur des moindres carr\'{e}s de la matrice des moyennes est aussi bri\`{e}vement comment\'{e}e.
Maaouia F.
Touati Abderrahmen
No associations
LandOfFree
Identification of multitype branching processes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Identification of multitype branching processes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Identification of multitype branching processes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-118515