Computer Science – Learning
Scientific paper
2012-02-14
Computer Science
Learning
Scientific paper
This work addresses the following question: Under what assumptions on the data generating process can one infer the causal graph from the joint distribution? The approach taken by conditional independence-based causal discovery methods is based on two assumptions: the Markov condition and faithfulness. It has been shown that under these assumptions the causal graph can be identified up to Markov equivalence (some arrows remain undirected) using methods like the PC algorithm. In this work we propose an alternative by defining Identifiable Functional Model Classes (IFMOCs). As our main theorem we prove that if the data generating process belongs to an IFMOC, one can identify the complete causal graph. To the best of our knowledge this is the first identifiability result of this kind that is not limited to linear functional relationships. We discuss how the IFMOC assumption and the Markov and faithfulness assumptions relate to each other and explain why we believe that the IFMOC assumption can be tested more easily on given data. We further provide a practical algorithm that recovers the causal graph from finitely many data; experiments on simulated data support the theoretical findings.
Janzing Dominik
Mooij Joris
Peters Jonas
Schoelkopf Bernhard
No associations
LandOfFree
Identifiability of Causal Graphs using Functional Models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Identifiability of Causal Graphs using Functional Models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Identifiability of Causal Graphs using Functional Models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-90659