Hyperplane conjecture for quotient spaces of $L_p$

Mathematics – Functional Analysis

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We give a positive solution for the hyperplane conjecture of quotient spaces
F of $L_p$, where $1\pl \sup_{H \p hyperplane} vol(B_F\cap H) \pl.\] This result is extended to
Banach lattices which does not contain $\ell_1^n$'s uniformly. Our main tools
are tensor products and minimal volume ratio with respect to $L_p$-sections.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Hyperplane conjecture for quotient spaces of $L_p$ does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Hyperplane conjecture for quotient spaces of $L_p$, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hyperplane conjecture for quotient spaces of $L_p$ will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-558523

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.