Mathematics – Algebraic Geometry
Scientific paper
2008-11-05
GAFA 19, No. 5, 1481-1493 (2010)
Mathematics
Algebraic Geometry
21 pages, v. 2.0, many references added, many minor corrections
Scientific paper
Let $M$ be a compact, holomorphic symplectic Kaehler manifold, and $L$ a
non-trivial line bundle admitting a metric of semi-positive curvature. We show
that some power of $L$ is effective. This result is related to the hyperkaehler
SYZ conjecture, which states that such a manifold admits a holomorphic
Lagrangian fibration, if $L$ is not big.
No associations
LandOfFree
Hyperkahler SYZ conjecture and semipositive line bundles does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Hyperkahler SYZ conjecture and semipositive line bundles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hyperkahler SYZ conjecture and semipositive line bundles will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-372907