Mathematics – Combinatorics
Scientific paper
2004-10-17
Mathematics
Combinatorics
16 pages. To appear in J. Combin. Theory Ser. A
Scientific paper
We show that a 1969 result of Bouwkamp and de Bruijn on a formal power series expansion can be interpreted as the hypergraph analogue of the fact that every connected graph with n vertices has at least n-1 edges. We explain some of Bouwkamp and de Bruijn's formulas in terms of hypertrees and we use Lagrange inversion to count hypertrees by the number of vertices and the number of edges of a specified size.
Gessel Ira M.
Kalikow Louis H.
No associations
LandOfFree
Hypergraphs and a functional equation of Bouwkamp and de Bruijn does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Hypergraphs and a functional equation of Bouwkamp and de Bruijn, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hypergraphs and a functional equation of Bouwkamp and de Bruijn will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-558127