Hyperbolic graphs of small complexity

Mathematics – Geometric Topology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

35 pages, 22 figures, 10 tables

Scientific paper

In this paper we enumerate and classify the ``simplest'' pairs (M,G) where M is a closed orientable 3-manifold and G is a trivalent graph embedded in M. To enumerate the pairs we use a variation of Matveev's definition of complexity for 3-manifolds, and we consider only (0,1,2)-irreducible pairs, namely pairs (M,G) such that any 2-sphere in M intersecting G transversely in at most 2 points bounds a ball in M either disjoint from G or intersecting G in an unknotted arc. To classify the pairs our main tools are geometric invariants defined using hyperbolic geometry. In most cases, the graph complement admits a unique hyperbolic structure with parabolic meridians; this structure was computed and studied using Heard's program Orb and Goodman's program Snap. We determine all (0,1,2)-irreducible pairs up to complexity 5, allowing disconnected graphs but forbidding components without vertices in complexity 5. The result is a list of 129 pairs, of which 123 are hyperbolic with parabolic meridians. For these pairs we give detailed information on hyperbolic invariants including volumes, symmetry groups and arithmetic invariants. Pictures of all hyperbolic graphs up to complexity 4 are provided. We also include a partial analysis of knots and links. The theoretical framework underlying the paper is twofold, being based on Matveev's theory of spines and on Thurston's idea (later developed by several authors) of constructing hyperbolic structures via triangulations. Many of our results were obtained (or suggested) by computer investigations.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Hyperbolic graphs of small complexity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Hyperbolic graphs of small complexity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hyperbolic graphs of small complexity will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-577627

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.