Nonlinear Sciences – Adaptation and Self-Organizing Systems
Scientific paper
2008-05-12
Nonlinear Sciences
Adaptation and Self-Organizing Systems
15 pages, 14 figures
Scientific paper
10.1088/1742-5468/2008/09/P09001
Fluctuations and noise may alter the behavior of dynamical systems considerably. For example, oscillations may be sustained by demographic fluctuations in biological systems where a stable fixed point is found in the absence of noise. We here extend the theoretical analysis of such stochastic effects to models which have a limit cycle for some range of the model parameters. We formulate a description of fluctuations about the periodic orbit which allows the relation between the stochastic oscillations in the fixed point phase and the oscillations in the limit cycle phase to be elucidated. In the case of the limit cycle, a suitable transformation into a co-moving frame allow fluctuations transverse and longitudinal with respect to the limit cycle to be effectively decoupled. While longitudinal fluctuations are of a diffusive nature, those in the transverse direction follow a stochastic path more akin to an Ornstein-Uhlenbeck process. Their power spectrum is computed analytically within a van Kampen expansion in the inverse system size. This is carried out in two different ways, and the subsequent comparison with numerical simulations illustrates the effects that can occur due to diffusion in the longitudinal direction.
Boland Richard P.
Galla Tobias
McKane Alan J.
No associations
LandOfFree
How limit cycles and quasi-cycles are related in systems with intrinsic noise does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with How limit cycles and quasi-cycles are related in systems with intrinsic noise, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and How limit cycles and quasi-cycles are related in systems with intrinsic noise will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-325136