Mathematics – Dynamical Systems
Scientific paper
2008-08-13
Journal of Mathematical Physics 49, 8 (2008) 082901
Mathematics
Dynamical Systems
14 pages
Scientific paper
10.1063/1.2963497
Fractional equations appear in the description of the dynamics of various physical systems. For Lagrangian systems, the embedding theory developped by Cresson ["Fractional embedding of differential operators and Lagrangian systems", J. Math. Phys. 48, 033504 (2007)] provides a univocal way to obtain such equations, stemming from a least action principle. However, no matter how equations are obtained, the dimension of the fractional derivative differs from the classical one and may induce problems of temporal homogeneity in fractional objects. In this paper, we show that it is necessary to introduce an extrinsic constant of time. Then, we use it to construct two equivalent fractional embeddings which retain homogeneity. The notion of fractional constant is also discussed through this formalism. Finally, an illustration is given with natural Lagrangian systems, and the case of the harmonic oscillator is entirely treated.
No associations
LandOfFree
Homogeneous fractional embeddings does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Homogeneous fractional embeddings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Homogeneous fractional embeddings will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-387132