Hodge polynomials of the moduli spaces of rank 3 pairs

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

23 pages, no figures

Scientific paper

Let $X$ be a smooth projective curve of genus $g\geq 2$ over the complex numbers. A holomorphic triple $(E_1,E_2,\phi)$ on $X$ consists of two holomorphic vector bundles $E_1$ and $E_2$ over $X$ and a holomorphic map $\phi:E_2 \to E_1$. There is a concept of stability for triples which depends on a real parameter $\sigma$. In this paper, we determine the Hodge polynomials of the moduli spaces of $\sigma$-stable triples with $\rk(E_1)=3$, $\rk(E_2)=1$, using the theory of mixed Hodge structures. This gives in particular the Poincar\'e polynomials of these moduli spaces. As a byproduct, we recover the Hodge polynomial of the moduli space of odd degree rank 3 stable vector bundles.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Hodge polynomials of the moduli spaces of rank 3 pairs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Hodge polynomials of the moduli spaces of rank 3 pairs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hodge polynomials of the moduli spaces of rank 3 pairs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-121894

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.