Statistics – Computation
Scientific paper
Aug 1989
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1989mnras.239..845b&link_type=abstract
Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711), vol. 239, Aug. 15, 1989, p. 845-867.
Statistics
Computation
58
Binary Stars, Gravitational Waves, Stellar Motions, Stellar Radiation, Computational Astrophysics, Pulsars, Stellar Mass, Stellar Orbits
Scientific paper
The rate of emission of gravitational energy from a system of two point masses is computed with an accuracy consistent with the first-order relativistic corrections in the dynamics of the system. The computations use recently-developed post-Newtonian formalisms for the dynamics of two point masses and for the generation of gravitational waves. In the case of two point masses in (quasi) elliptic motion, standard heuristic arguments yield the expression, valid at higher relativistic order, of the rate of decrease of the orbital period of the masses. The higher-order relativistic correction contributes to the rate a fractional amount of 0.00215 in the case of the binary pulsar PSR 1913 + 16. Computations valid for a system of two point masses in (quasi) hyperbolic motion are also presented. In this case, the same heuristic arguments permit the study, still valid at higher relativistic order, of the capture, by radiation emission, of two point masses moving on a quasi-hyperbolic orbit with small enough energy.
Blanchet Luc
Schaefer Gerhard
No associations
LandOfFree
Higher order gravitational radiation losses in binary systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Higher order gravitational radiation losses in binary systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Higher order gravitational radiation losses in binary systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1519495