Computer Science – Information Theory
Scientific paper
2010-04-30
Computer Science
Information Theory
47 pages, 7 figures, 1 table. To appear in the IEEE Transactions on Information Theory
Scientific paper
10.1109/TIT.2011.2158479
This paper investigates the effect of quantization on the performance of the Neyman-Pearson test. It is assumed that a sensing unit observes samples of a correlated stationary ergodic multivariate process. Each sample is passed through an N-point quantizer and transmitted to a decision device which performs a binary hypothesis test. For any false alarm level, it is shown that the miss probability of the Neyman-Pearson test converges to zero exponentially as the number of samples tends to infinity, assuming that the observed process satisfies certain mixing conditions. The main contribution of this paper is to provide a compact closed-form expression of the error exponent in the high-rate regime i.e., when the number N of quantization levels tends to infinity, generalizing previous results of Gupta and Hero to the case of non-independent observations. If d represents the dimension of one sample, it is proved that the error exponent converges at rate N^{2/d} to the one obtained in the absence of quantization. As an application, relevant high-rate quantization strategies which lead to a large error exponent are determined. Numerical results indicate that the proposed quantization rule can yield better performance than existing ones in terms of detection error.
Bianchi Pascal
Villard Joffrey
No associations
LandOfFree
High-Rate Vector Quantization for the Neyman-Pearson Detection of Correlated Processes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with High-Rate Vector Quantization for the Neyman-Pearson Detection of Correlated Processes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-Rate Vector Quantization for the Neyman-Pearson Detection of Correlated Processes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-388298