Statistics – Machine Learning
Scientific paper
2010-09-02
Journal of Machine Learning Research, Volume 12, pp 2975-3026, 2011
Statistics
Machine Learning
50 Pages, 6 figures. Major revision
Scientific paper
Undirected graphs are often used to describe high dimensional distributions. Under sparsity conditions, the graph can be estimated using $\ell_1$-penalization methods. We propose and study the following method. We combine a multiple regression approach with ideas of thresholding and refitting: first we infer a sparse undirected graphical model structure via thresholding of each among many $\ell_1$-norm penalized regression functions; we then estimate the covariance matrix and its inverse using the maximum likelihood estimator. We show that under suitable conditions, this approach yields consistent estimation in terms of graphical structure and fast convergence rates with respect to the operator and Frobenius norm for the covariance matrix and its inverse. We also derive an explicit bound for the Kullback Leibler divergence.
Bühlmann Peter
Rütimann Philipp
Xu Min
Zhou Shuheng
No associations
LandOfFree
High-dimensional covariance estimation based on Gaussian graphical models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with High-dimensional covariance estimation based on Gaussian graphical models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-dimensional covariance estimation based on Gaussian graphical models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-683862