Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology
Scientific paper
2009-10-20
Phys.Rev.D83:044045,2011
Astronomy and Astrophysics
Astrophysics
General Relativity and Quantum Cosmology
Scientific paper
10.1103/PhysRevD.83.044045
We present results from a new code for binary black hole evolutions using the moving-puncture approach, implementing finite differences in generalised coordinates, and allowing the spacetime to be covered with multiple communicating non-singular coordinate patches. Here we consider a regular Cartesian near zone, with adapted spherical grids covering the wave zone. The efficiencies resulting from the use of adapted coordinates allow us to maintain sufficient grid resolution to an artificial outer boundary location which is causally disconnected from the measurement. For the well-studied test-case of the inspiral of an equal-mass non-spinning binary (evolved for more than 8 orbits before merger), we determine the phase and amplitude to numerical accuracies better than 0.010% and 0.090% during inspiral, respectively, and 0.003% and 0.153% during merger. The waveforms, including the resolved higher harmonics, are convergent and can be consistently extrapolated to $r\to\infty$ throughout the simulation, including the merger and ringdown. Ringdown frequencies for these modes (to $(\ell,m)=(6,6)$) match perturbative calculations to within 0.01%, providing a strong confirmation that the remnant settles to a Kerr black hole with irreducible mass $M_{\rm irr} = 0.884355\pm20\times10^{-6}$ and spin $S_f/M_f^2 = 0.686923 \pm 10\times10^{-6}$
Diener Peter
Dorband Nils
Pollney Denis
Reisswig Christian
Schnetter Erik
No associations
LandOfFree
High accuracy binary black hole simulations with an extended wave zone does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with High accuracy binary black hole simulations with an extended wave zone, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High accuracy binary black hole simulations with an extended wave zone will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-144263