Computer Science
Scientific paper
Apr 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009adspr..43.1101c&link_type=abstract
Advances in Space Research, Volume 43, Issue 7, p. 1101-1110.
Computer Science
7
Scientific paper
Urban land cover information extraction is a hot topic within urban studies. Heterogeneous spectra of high resolution imagery—caused by the inner complexity of urban areas—make it difficult. In this paper a hierarchical object oriented classification method over an urban area is presented. Combining QuickBird imagery and light detection and ranging (LIDAR) data, nine kinds of land cover objects were extracted. The Spectral Shape Index (SSI) method is used to distinguish water and shadow from black body mask, with 100% classification accuracy for water and 95.56% for shadow. Vegetation was extracted by using a Normalized Difference Vegetation Index (NDVI) image at first, and then a more accurate classification result of shrub and grassland is obtained by integrating the height information from LIDAR data. The classification accuracy of shrub was improved from 85.25% to 92.09% and from 82.86% to 97.06% for grassland. More granularity of this classification can be obtained by using this method. High buildings and low buildings can, for example, be distinguished from the original building class. Road class can also be further classified into roads and crossroads. The comparison of the classification accuracy between this method and the traditional pixel-based method indicates that the total accuracy is improved from 69.12% to 89.40%.
Chen Yunhao
Li Jing
Su Wei
Sun Zhongping
No associations
LandOfFree
Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1860817