Heterogeneous distribution of nanophase aluminosilicate weathering products: Interpreting Martian weathering

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

[5415] Planetary Sciences: Solid Surface Planets / Erosion And Weathering, [5464] Planetary Sciences: Solid Surface Planets / Remote Sensing, [5470] Planetary Sciences: Solid Surface Planets / Surface Materials And Properties, [5709] Planetary Sciences: Fluid Planets / Composition

Scientific paper

Nanocrystalline alteration products form in a range of soil and regolith weathering environments on Earth. In some weathering systems, poorly crystalline aluminosilicates such as allophane are distributed heterogeneously, as a function of depth in a vertical weathering profile or as a function of micro-environmental factors. Both of these factors can be important for understanding weathering processes on Earth and are particularly important to consider when interpreting allophane on Mars. Chemical and mineralogical measurements of Mars could be confounded by a vertical heterogeneity common to many weathering systems, because what is observed at the surface by spacecraft may not be representative of the complete weathering system. Appropriate caution should be taken to compare surface measurements of Mars to terrestrial weathering environments that examine soil columns. Also, nanocrystalline aluminosilicates are known to form coatings on regolith particles and rock fragments and can be compositionally distinct from weathering products formed in the greater regolith matrix. These types of coatings are particularly important to consider for interpreting remotely sensed spectral measurements because fragmented rocks, from sand to boulders, comprise much of the relatively dust-free surfaces of Mars. Due to their strong influence on spectral observations, coatings could be strongly detectable by thermal infrared spectroscopy relative to coexisting, weakly aggregated fine-grained weathering products, resulting in the oversampling of coatings. Consequently, detected nanocrystalline aluminosilicates phases may not represent the overall weathering system. As an example of these influences, we will consider the high-silica material(s) detected in Mars northern plains. Although there are several models for how this material formed, if it formed by in situ regolith weathering then the high-silica material was precipitated from dissolved regolith materials. Evidence for extensive cryoturbation in the northern plains indicates that subsurface materials have been brought to the surface, thus any vertical compositional heterogeneity resulting from weathering may have been subsequently homogenized. However, small-scale compositional heterogeneities could persist. Although high-silica material may coat particulates that comprise much of the surface, it may only represent only a micro-environment of the subsurface weathering. For example, although we suggest that the northern plains contain a silica-rich allophanic phase, weathering may also have produced more aluminous phases that are undetected in spectra because they do not form coatings. In addition, we will consider the possibility that Martian weathering produces poorly crystalline aluminosilicate phases that are structurally different from true allophane. We will report on the thermal infrared spectral difference between these phases. The details of Martian weathering processes that can be inferred from detection of allophane are limited by how well vertical and micro-environmental heterogeneities are understood and compensated for, for which input from the terrestrial weathering and soil science communities is essential.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Heterogeneous distribution of nanophase aluminosilicate weathering products: Interpreting Martian weathering does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Heterogeneous distribution of nanophase aluminosilicate weathering products: Interpreting Martian weathering, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heterogeneous distribution of nanophase aluminosilicate weathering products: Interpreting Martian weathering will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-870278

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.