Helium transfer from water into quartz crystals: A new approach for porewater dating [rapid communication]

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Several important fundamental and applied problems require a quantification of slow rates of groundwater flow. To resolve these problems helium appears to be a promising tracer. In this contribution we discuss a new approach, which gives the helium inventory in a rock pore water system by using the relevant mineral record, i.e., without extraction and investigation of the porewater samples. Some U- and Th-poor minerals such as quartz (quartz separates from Permo-Carboniferous Formation, sandstone shale interlayering, Molasses Basin, Northern Switzerland, hereafter PCF, are used in this study) contain excessive helium having migrated into their internal helium-accessible volume (HAV) from the surrounding porewater [I.N. Tolstikhin, B.E. Lehmann, H.H. Loosli, A. Gautschi, Helium and argon isotopes in rocks, minerals and related groundwaters: a case study in Northern Switzerland, Geochim. Cosmochim. Acta 60 (1996) 1497 1514]. These volumes are estimated by using helium as a nano-size penetrating tool, i.e., by saturation of the minerals with helium under controlled pressure temperature conditions and subsequent measurements of the helium-saturated concentrations. In the quartz separates HAV/total volume ratios vary from 0.017% to 0.16%; along with the measured initial (unsaturated) He concentration the HAV gives the internal helium pressure, the mean value obtained for 7 samples (25 sample aliquots) is P = 0.45 ± 0.15 atm (1 σ). The product of helium pressure and solubility (7.35 × 10- 3 cc STP He/cc H2O for the temperature and salinity of PCF aquifers reported in [F.J. Pearson, W. Balderer, H.H. Loosli, B.E. Lehmann, A. Matter, T. Peters, H. Schmassmann, A. Gautschi, Applied Isotope Hydrogeology A Case Study in Northern Switzerland, Elsevier Amsterdam, 1991, 439 pp.]) is the mineral-derived He concentration in the respective porewater, CPW = 0.0035 ± 0.0017 cc He/cc H2O. This value is in full accord with measured He concentrations in PCF aquifers, CPCF, varying from 0.0045 to 0.0016 cc He/cc H2O. This agreement validates the proposed approach and also shows that the mineral porewater helium concentration equilibrium has been established. Indeed, estimates of the He-migration rates through our quartz samples show that in ˜6000 years the internal pressure should equilibrate with He-concentration in related porewater of PCF, and this time interval is short compared to independent estimates [I.N. Tolstikhin, B.E. Lehmann, H.H. Loosli, A. Gautschi, Helium and argon isotopes in rocks, minerals and related groundwaters: a case study in Northern Switzerland, Geochim. Cosmochim. Acta 60 (1996) 1497 1514]. The helium inventory in the rock porewater assemblage shows that helium abundance in pore waters is indeed important. In shale samples (with ˜15% porosity) porewaters contain more helium than the host minerals altogether. Porewater helium-concentration profiles, available from the mineral record, along with helium production rates are input parameters allowing model(s) of helium migration through a hydrological structure to be developed. Quite high helium concentrations in PCF porewaters imply slow removal mechanisms, which will be discussed elsewhere.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Helium transfer from water into quartz crystals: A new approach for porewater dating [rapid communication] does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Helium transfer from water into quartz crystals: A new approach for porewater dating [rapid communication], we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Helium transfer from water into quartz crystals: A new approach for porewater dating [rapid communication] will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1282802

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.