Mathematics – Probability
Scientific paper
2012-04-05
Mathematics
Probability
Scientific paper
Random sets with long-range dependence can be generated using a Boolean model with power-law grain sizes. We study thinnings of such Boolean models which have the hard-core property that no grains overlap in the resulting germ-grain model. A fundamental question is whether long-range dependence is preserved under such thinnings. To answer this question we study four natural thinnings of a Poisson germ-grain model where the grains are spheres with a regularly varying size distribution. We show that a thinning which favors large grains preserves the slow correlation decay of the original model, whereas a thinning which favors small grains does not. Our most interesting finding concerns the case where only disjoint grains are retained, which corresponds to the well-known Mat\'ern type I thinning. In the resulting germ-grain model, typical grains have exponentially small sizes, but rather surprisingly, the long-range dependence property is still present. As a byproduct, we obtain new mechanisms for generating homogeneous and isotropic random point configurations having a power-law correlation decay.
Kuronen Mikko
Leskelä Lasse
No associations
LandOfFree
Hard-core thinnings of germ-grain models with power-law grain sizes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Hard-core thinnings of germ-grain models with power-law grain sizes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hard-core thinnings of germ-grain models with power-law grain sizes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-212807