Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena
Scientific paper
2009-12-14
Astronomy and Astrophysics
Astrophysics
High Energy Astrophysical Phenomena
7 pages, 3 figures, accepted to Astronomy & Astrophysics
Scientific paper
The Hall effect is an important nonlinear mechanism affecting the evolution of magnetic fields in neutron stars. Studies of the governing equation, both theoretical and numerical, have shown that the Hall effect proceeds in a turbulent cascade of energy from large to small scales. We investigate the small-scale Hall instability conjectured to exist from the linear stability analysis of Rheinhardt and Geppert. Identical linear stability analyses are performed to find a suitable background field to model Rheinhardt and Geppert's ideas. The nonlinear evolution of this field is then modelled using a three-dimensional pseudospectral numerical MHD code. Combined with the background field, energy was injected at the ten specific eigenmodes with the greatest positive eigenvalues as inferred by the linear stability analysis. Energy is transferred to different scales in the system, but not into small scales to any extent that could be interpreted as a Hall instability. Any instabilities are overwhelmed by a late-onset turbulent Hall cascade, initially avoided by the choice of background field, but soon generated by nonlinear interactions between the growing eigenmodes. The Hall cascade is shown here, and by several authors elsewhere, to be the dominant mechanism in this system.
Hollerbach Rainer
Wareing Christopher John
No associations
LandOfFree
Hall cascades versus instabilities in neutron star magnetic fields does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Hall cascades versus instabilities in neutron star magnetic fields, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hall cascades versus instabilities in neutron star magnetic fields will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-624671