Astronomy and Astrophysics – Astrophysics – Earth and Planetary Astrophysics
Scientific paper
2010-02-25
Astrophysical Journal 721 (2010) 1295-1307
Astronomy and Astrophysics
Astrophysics
Earth and Planetary Astrophysics
References added, text and figures updated, accepted by ApJ
Scientific paper
10.1088/0004-637X/721/2/1295
In the outer regions of the habitable zone, the risk of transitioning into a globally frozen "snowball" state poses a threat to the habitability of planets with the capacity to host water-based life. We use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and ocean coverage might influence the onset of such a snowball state. For an exoplanet, these parameters may be strikingly different from the values observed for Earth. Since, for constant semimajor axis, the annual mean stellar irradiation scales with (1-e^2)^(-1/2), one might expect the greatest habitable semimajor axis (for fixed atmospheric composition) to scale as (1-e^2)^(-1/4). We find that this standard ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity 0.5, our EBM suggests that the greatest habitable semimajor axis can vary by more than 0.8 AU (78%!) depending on obliquity, with higher obliquity worlds generally more stable against snowball transitions. One might also expect that the long winter at an eccentric planet's apoastron would render it more susceptible to global freezing. Our models suggest that this is not a significant risk for Earth-like planets around Sun-like stars since such planets are buffered by the thermal inertia provided by oceans covering at least 10% of their surface. Since planets on eccentric orbits spend much of their year particularly far from the star, such worlds might turn out to be especially good targets for direct observations with missions such as TPF-Darwin. Nevertheless, the extreme temperature variations achieved on highly eccentric exo-Earths raise questions about the adaptability of life to marginally or transiently habitable conditions.
Dressing Courtney D.
Menou Kristen
Raymond Sean N.
Scharf Caleb. A.
Spiegel David S.
No associations
LandOfFree
Habitable Climates: The Influence of Eccentricity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Habitable Climates: The Influence of Eccentricity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Habitable Climates: The Influence of Eccentricity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-288847