Astronomy and Astrophysics – Astronomy
Scientific paper
May 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011iaus..280p.187g&link_type=abstract
The Molecular Universe, Posters from the proceedings of the 280th Symposium of the International Astronomical Union held in Tole
Astronomy and Astrophysics
Astronomy
Scientific paper
Photodissociation region (PDR) models are used to understand the evolution of the far-UV illuminated matter both in our Galaxy and in external galaxies. The spectacular instrumental improvements, which happens in radioastronomy with the advent of Herschel, ALMA and NOEMA, call for matching progresses in PDR modeling. While it is now confirmed that some interstellar species are mostly formed in the gas phase (CO for instance) and others on grains (CH_3OH), the chemical routes for other species, like H_2CO, are still debated because it is likely that solid and gas phase processes are both needed. The availability of well defined observations is essential here to discriminate between chemical assumptions about the important grain surface processes: adsorption, desorption and reactivity. Due to its closeness (~400 pc) and simple geometry, the Horsehead PDR is particularly well suited to investigate the grain surface chemistry. We present observations of 7 transitions of formaldehyde (H_2CO) toward two positions: the edge of the nebula exposed to the UV-field (PDR), and a colder region (cold core) shielded from the UV radiation. A non-LTE Montecarlo radiative transfer code is used to determine the H2CO abundance from the observed intensities and line profiles. We find that the H_2CO abundance is very similar in the warm PDR and in the cold dense core. The inferred abundances are compared with PDR models, including both gas-phase and grain surface reactions, in order to study the dominant formation routes of H_2CO. Pure gas-phase chemistry models fail to reproduce the observed H2CO abundance by a factor ~10 in the PDR, while surface grain chemistry successfully reproduces the observed abundance.
Gerin Maryvonne
Goicoechea Javier R.
Guzmán Viviana
Pety Jérôme
Roueff Evelyne
No associations
LandOfFree
H_2CO in the Horsehead nebula does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with H_2CO in the Horsehead nebula, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and H_2CO in the Horsehead nebula will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-929604