Gyrokinetic Particle Simulation of Nonlinear Saturation of Mirror Instability

Statistics – Applications

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7829 Kinetic Waves And Instabilities, 7839 Nonlinear Phenomena (4400, 6944), 7867 Wave/Particle Interactions (2483, 6984)

Scientific paper

Low frequency compressible electromagnetic mirror modes driven by temperature anisotropy in high-beta plasmas have been observed by satellites in space plasmas, such as planetary and cometary magnetosheaths. In this work, mechanism of the nonlinear saturation of the mirror instability is studied using the gyrokinetic particle simulation. Phase-space particle trapping due to the nonlinear mirror force is found to be the dominant saturation mechanism in the simulation of a single mirror mode with relatively weak drive [Nonlinear Saturation of Mirror Instability, H. Qu, Z. Lin, and L. Chen, Geophy. Res. Lett. 35, L10108 (2008)]. At the nonlinear saturation, the phase-space island of the distribution function is formed. The oscillation frequency of the saturated perturbation amplitude is close to the bounce frequency of the trapped particles, which is comparable to the linear growth rate of the mirror mode. Scaling of the saturation amplitude is consistent with the onset of the particle trapping. With strong instability drive, relaxation toward marginal stability dominates the nonlinear saturation of the mirror instability. Phase-space trapping, however, persists after the saturation and continues to regulate the nonlinear evolution of the mirror mode. Applications of the gyrokinetic particle simulation for the studies of nonlinear kinetic processes in space plasmas, such as solar wind heating by Alfvenic turbulence and excitation of low frequency drift compressible modes, will also be discussed. This work is supported by an NSF CAREER Award.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Gyrokinetic Particle Simulation of Nonlinear Saturation of Mirror Instability does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Gyrokinetic Particle Simulation of Nonlinear Saturation of Mirror Instability, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gyrokinetic Particle Simulation of Nonlinear Saturation of Mirror Instability will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1098595

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.