Groupoid Extensions of Mapping Class Representations for Bordered Surfaces

Mathematics – Geometric Topology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

24 pages, 4 figures Theorem 3.6 has been strengthened, and Theorems 8.1 and 8.2 have been added

Scientific paper

The mapping class group of a surface with one boundary component admits numerous interesting representations including as a group of automorphisms of a free group and as a group of symplectic transformations. Insofar as the mapping class group can be identified with the fundamental group of Riemann's moduli space, it is furthermore identified with a subgroup of the fundamental path groupoid upon choosing a basepoint. A combinatorial model for this, the mapping class groupoid, arises from the invariant cell decomposition of Teichm\"uller space, whose fundamental path groupoid is called the Ptolemy groupoid. It is natural to try to extend representations of the mapping class group to the mapping class groupoid, i.e., construct a homomorphism from the mapping class groupoid to the same target that extends the given representations arising from various choices of basepoint. Among others, we extend both aforementioned representations to the groupoid level in this sense, where the symplectic representation is lifted both rationally and integrally. The techniques of proof include several algorithms involving fatgraphs and chord diagrams. The former extension is given by explicit formulae depending upon six essential cases, and the kernel and image of the groupoid representation are computed. Furthermore, this provides groupoid extensions of any representation of the mapping class group that factors through its action on the fundamental group of the surface including, for instance, the Magnus representation and representations on the moduli spaces of flat connections.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Groupoid Extensions of Mapping Class Representations for Bordered Surfaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Groupoid Extensions of Mapping Class Representations for Bordered Surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Groupoid Extensions of Mapping Class Representations for Bordered Surfaces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-383894

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.