Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homog`enes

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

14 pages, in French

Scientific paper

This is a thoroughly revised version of math.AG/0502516v1 (24 Feb. 2005). Let k be a field of characteristic zero. Let Y=G/H, where G is a connected linear algebraic group over k and H is a connected closed k-subgroup of G. Let X be a smooth compactification of Y over k. We prove the conjecture set forward in the previous version : the Galois-lattice given by the geometric Picard group of X is flasque. The previous version had only partial results in this direction. They were obtained at the expense of a long d'etour via local and global fields. We owe the drastic improvement to a suggestion by O. Gabber. The previous version also assumed G semisimple simply connected. We can dispense with this. The result now covers the previously known case Y=G, with G an arbitrary connected linear algebraic group. ----- Ceci est une version enti`erement r'evis'ee de math.AG/0502516v1 (24 f'ev. 2005). Soient k un corps de caract'eristique z'ero, G un k-groupe lin'eaire connexe et H un k-sous-groupe ferm'e connexe de G. Notons Y=G/H. Soit X une k-compactification lisse de Y. Dans la pr'ec'edente version, nous avancions la conjecture : le module galoisien donn'e par le groupe de Picard g'eom'etrique de X (c'est un r'eseau) est un module flasque. Nous 'etablissions des cas particuliers de cette conjecture, sous l'hypoth`ese suppl'ementaire que G est semi-simple simplement connexe, au moyen d'une r'eduction alambiqu'ee au cas des corps p-adiques. Le pr'esent texte, qui doit beaucoup \`a une suggestion d'O. Gabber, 'etablit la conjecture dans le cas g'en'eral.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homog`enes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homog`enes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homog`enes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-235688

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.