Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines

Mathematics – Number Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

23 pages; minor changes only

Scientific paper

Let a be a nonzero integer. If a is not congruent to 4 or 5 modulo 9 then there is no Brauer-Manin obstruction to the existence of integers x, y, z such that x^3+y^3+z^3=a. In addition, there is no Brauer-Manin obstruction to the existence of integers x, y, z such that x^3+y^3+2z^3=a. ---- Soit a un entier non nul. Si a n'est pas congru \`a 4 ou 5 modulo 9, il n'y a pas d'obstruction de Brauer-Manin \`a l'existence d'entiers x, y, z tels que x^3+y^3+z^3=a. D'autre part, il n'y a pas d'obstruction de Brauer-Manin \`a l'existence d'entiers x, y, z tels que x^3+y^3+2z^3=a.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-241217

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.