Mathematics – Number Theory
Scientific paper
2009-11-18
Mathematics
Number Theory
23 pages; minor changes only
Scientific paper
Let a be a nonzero integer. If a is not congruent to 4 or 5 modulo 9 then there is no Brauer-Manin obstruction to the existence of integers x, y, z such that x^3+y^3+z^3=a. In addition, there is no Brauer-Manin obstruction to the existence of integers x, y, z such that x^3+y^3+2z^3=a. ---- Soit a un entier non nul. Si a n'est pas congru \`a 4 ou 5 modulo 9, il n'y a pas d'obstruction de Brauer-Manin \`a l'existence d'entiers x, y, z tels que x^3+y^3+z^3=a. D'autre part, il n'y a pas d'obstruction de Brauer-Manin \`a l'existence d'entiers x, y, z tels que x^3+y^3+2z^3=a.
Colliot-Th'el`ene Jean-Louis
Wittenberg Olivier
No associations
LandOfFree
Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-241217