Gravitational eigenstates in weak gravity I: dipole decay rates of charged particles

Astronomy and Astrophysics – Astrophysics – Galaxy Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

25 pages, 2 tables, 2 figures

Scientific paper

The experimental demonstration that neutrons can reside in gravitational quantum stationary states formed in the gravitational field of the Earth indicates a need to examine in more detail the general theoretical properties of gravitational eigenstates. Despite the almost universal study of quantum theory applied to atomic and molecular states very little work has been done to investigate the properties of the hypothetical stationary states that should exist in similar types of gravitational central potential wells, particularly those with large quantum numbers. In this first of a series of papers, we attempt to address this shortfall by developing analytic, non-integral expressions for the electromagnetic dipole state-to-state transition rates of charged particles for any given initial and final gravitational quantum states. The expressions are non-relativistic and hence valid provided the eigenstate wavefunctions do not extend significantly into regions of strong gravity. The formulae may be used to obtain tractable approximations to the transition rates that can be used to give general trends associated with certain types of transitions. Surprisingly, we find that some of the high angular momentum eigenstates have extremely long lifetimes and a resulting stability that belies the multitude of channels available for state decay.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Gravitational eigenstates in weak gravity I: dipole decay rates of charged particles does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Gravitational eigenstates in weak gravity I: dipole decay rates of charged particles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gravitational eigenstates in weak gravity I: dipole decay rates of charged particles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-48505

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.