Biology – Quantitative Biology – Quantitative Methods
Scientific paper
2010-09-04
Biology
Quantitative Biology
Quantitative Methods
22 pages, 5 figures; Journal special issue for workshop papers from "New Problems and Methods in Computational Biology" A work
Scientific paper
Background: The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM). The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET) versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM) with Gaussian observables. A detailed description of smFRET is provided as well. Results: The VBEM algorithm returns the model's evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME), and the latter a description of the model's parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML) optimized by the expectation maximization (EM) algorithm, the most important being a natural form of model selection and a well-posed (non-divergent) optimization problem. Conclusions: The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.
Bronson Jonathan E.
Fei Jingyi
Gonzalez Ruben L. Jr.
Hofman Jake M.
Wiggins Chris H.
No associations
LandOfFree
Graphical models for inferring single molecule dynamics does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Graphical models for inferring single molecule dynamics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Graphical models for inferring single molecule dynamics will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-285007