Mathematics – Statistics Theory
Scientific paper
2007-08-09
Mathematics
Statistics Theory
Major revision; to appear in Journal of Machine Learning Research
Scientific paper
In graphical modelling, a bi-directed graph encodes marginal independences among random variables that are identified with the vertices of the graph. We show how to transform a bi-directed graph into a maximal ancestral graph that (i) represents the same independence structure as the original bi-directed graph, and (ii) minimizes the number of arrowheads among all ancestral graphs satisfying (i). Here the number of arrowheads of an ancestral graph is the number of directed edges plus twice the number of bi-directed edges. In Gaussian models, this construction can be used for more efficient iterative maximization of the likelihood function and to determine when maximum likelihood estimates are equal to empirical counterparts.
Drton Mathias
Richardson Thomas S.
No associations
LandOfFree
Graphical methods for efficient likelihood inference in Gaussian covariance models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Graphical methods for efficient likelihood inference in Gaussian covariance models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Graphical methods for efficient likelihood inference in Gaussian covariance models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-417645