Mathematics – Optimization and Control
Scientific paper
2010-02-11
Mathematics
Optimization and Control
15 pages
Scientific paper
In many applications, nodes in a network desire not only a consensus, but an optimal one. To date, a family of subgradient algorithms have been proposed to solve this problem under general convexity assumptions. This paper shows that, for the scalar case and by assuming a bit more, novel non-gradient-based algorithms with appealing features can be constructed. Specifically, we develop Pairwise Equalizing (PE) and Pairwise Bisectioning (PB), two gossip algorithms that solve unconstrained, separable, convex consensus optimization problems over undirected networks with time-varying topologies, where each local function is strictly convex, continuously differentiable, and has a minimizer. We show that PE and PB are easy to implement, bypass limitations of the subgradient algorithms, and produce switched, nonlinear, networked dynamical systems that admit a common Lyapunov function and asymptotically converge. Moreover, PE generalizes the well-known Pairwise Averaging and Randomized Gossip Algorithm, while PB relaxes a requirement of PE, allowing nodes to never share their local functions.
Bow Travis D.
Lu Jie
Regier Paul R.
Tang Choon Yik
No associations
LandOfFree
Gossip Algorithms for Convex Consensus Optimization over Networks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Gossip Algorithms for Convex Consensus Optimization over Networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gossip Algorithms for Convex Consensus Optimization over Networks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-67937