Mathematics – Statistics Theory
Scientific paper
2010-07-08
Annals of Statistics 2011, Vol. 39, No. 5, 2533-2556
Mathematics
Statistics Theory
Published in at http://dx.doi.org/10.1214/11-AOS910 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Scientific paper
10.1214/11-AOS910
Testing for the significance of a subset of regression coefficients in a linear model, a staple of statistical analysis, goes back at least to the work of Fisher who introduced the analysis of variance (ANOVA). We study this problem under the assumption that the coefficient vector is sparse, a common situation in modern high-dimensional settings. Suppose we have $p$ covariates and that under the alternative, the response only depends upon the order of $p^{1-\alpha}$ of those, $0\le\alpha\le1$. Under moderate sparsity levels, that is, $0\le\alpha\le1/2$, we show that ANOVA is essentially optimal under some conditions on the design. This is no longer the case under strong sparsity constraints, that is, $\alpha>1/2$. In such settings, a multiple comparison procedure is often preferred and we establish its optimality when $\alpha\geq3/4$. However, these two very popular methods are suboptimal, and sometimes powerless, under moderately strong sparsity where $1/2<\alpha<3/4$. We suggest a method based on the higher criticism that is powerful in the whole range $\alpha>1/2$. This optimality property is true for a variety of designs, including the classical (balanced) multi-way designs and more modern "$p>n$" designs arising in genetics and signal processing. In addition to the standard fixed effects model, we establish similar results for a random effects model where the nonzero coefficients of the regression vector are normally distributed.
Arias-Castro Ery
Candes Emmanuel J.
Plan Yaniv
No associations
LandOfFree
Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-103521