Mathematics – Number Theory
Scientific paper
2011-04-08
Mathematics
Number Theory
Scientific paper
We generalize Conway's approach to integral binary quadratic forms on Q to study integral binary hermitian forms on quadratic imaginary extensions of Q. In Conway's case, an indefinite form that doesn't represent 0 determines a line ("river") in the spine T associated with SL(2,Z) in the hyperbolic plane. In our generalization, such a form determines a plane ("ocean") in Mendoza's spine associated with the corresponding Bianchi group SL(2,A) in hyperbolic 3-space.
Bestvina Mladen
Savin Gordan
No associations
LandOfFree
Geometry of Integral Binary Hermitian Forms does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Geometry of Integral Binary Hermitian Forms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Geometry of Integral Binary Hermitian Forms will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-353948