Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena
Scientific paper
2011-12-02
Astronomy and Astrophysics
Astrophysics
High Energy Astrophysical Phenomena
30 pages, 26 figures, 3 tables, submitted to PRD, updated references
Scientific paper
As a neutron star (NS) is tidally disrupted by a black hole (BH) companion at the end of a BH-NS binary inspiral, its magnetic fields will be stretched and amplified. If sufficiently strong, these magnetic fields may impact the gravitational waveforms, merger evolution and mass of the remnant disk. Formation of highly-collimated magnetic field lines in the disk+spinning BH remnant may launch relativistic jets, providing the engine for a short-hard GRB. We analyze this scenario through fully general relativistic, magnetohydrodynamic (GRMHD) BHNS simulations from inspiral through merger and disk formation. Different initial magnetic field configurations and strengths are chosen for the NS interior for both nonspinning and moderately spinning (a/M=0.75) BHs aligned with the orbital angular momentum. Only strong interior (Bmax~10^17 G) initial magnetic fields in the NS significantly influence merger dynamics, enhancing the remnant disk mass by 100% and 40% in the nonspinning and spinning BH cases, respectively. However, detecting the imprint of even a strong magnetic field may be challenging for Advanced LIGO. Though there is no evidence of mass outflows or magnetic field collimation during the preliminary simulations we have performed, higher resolution, coupled with longer disk evolutions and different initial magnetic field configurations, may be required to definitively assess the possibility of BHNS binaries as short-hard GRB progenitors.
Etienne Zachariah B.
Liu Yuk Tung
Paschalidis Vasileios
Shapiro Stuart L.
No associations
LandOfFree
General relativistic simulations of black hole-neutron star mergers: Effects of magnetic fields does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with General relativistic simulations of black hole-neutron star mergers: Effects of magnetic fields, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and General relativistic simulations of black hole-neutron star mergers: Effects of magnetic fields will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-697294