Economy – Quantitative Finance – Pricing of Securities
Scientific paper
2009-08-21
Economy
Quantitative Finance
Pricing of Securities
45 pages, 15 figures
Scientific paper
In this work, we identify the most general measure of arbitrage for any market model governed by It\^o processes. We show that our arbitrage measure is invariant under changes of num\'{e}raire and equivalent probability. Moreover, such measure has a geometrical interpretation as a gauge connection. The connection has zero curvature if and only if there is no arbitrage. We prove an extension of the Martingale pricing theorem in the case of arbitrage. In our case, the present value of any traded asset is given by the expectation of future cash-flows discounted by a line integral of the gauge connection. We develop simple strategies to measure arbitrage using both simulated and real market data. We find that, within our limited data sample, the market is efficient at time horizons of one day or longer. However, we provide strong evidence for non-zero arbitrage in high frequency intraday data. Such events seem to have a decay time of the order of one minute.
Farinelli Simone
Vazquez Samuel E.
No associations
LandOfFree
Gauge Invariance, Geometry and Arbitrage does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Gauge Invariance, Geometry and Arbitrage, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gauge Invariance, Geometry and Arbitrage will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-666172