Mathematics – Symplectic Geometry
Scientific paper
2002-02-12
Mathematics
Symplectic Geometry
22 pages. Corrections made in Section 6.1, typos fixed and one reference added. To appear in Ann. Inst. Fourier
Scientific paper
We study gauge transformations of Dirac structures and the relationship between gauge and Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a symplectic groupoid is affected by a gauge transformation of the Poisson structure on its identity section, and prove that gauge-equivalent integrable Poisson structures are Morita equivalent. As an example, we study certain generic sets of Poisson structures on Riemann surfaces: we find complete gauge-equivalence invariants for such structures which, on the 2-sphere, yield a complete invariant of Morita equivalence.
Bursztyn Henrique
Radko Olga
No associations
LandOfFree
Gauge equivalence of Dirac structures and symplectic groupoids does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Gauge equivalence of Dirac structures and symplectic groupoids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gauge equivalence of Dirac structures and symplectic groupoids will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-621044