GARCH options via local risk minimization

Economy – Quantitative Finance – Pricing of Securities

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0


25 pages

Scientific paper

We apply a quadratic hedging scheme developed by Foellmer, Schweizer, and Sondermann to European contingent products whose underlying asset is modeled using a GARCH process and show that local risk-minimizing strategies with respect to the physical measure do exist, even though an associated minimal martingale measure is only available in the presence of bounded innovations. More importantly, since those local risk-minimizing strategies are in general convoluted and difficult to evaluate, we introduce Girsanov-like risk-neutral measures for the log-prices that yield more tractable and useful results. Regarding this subject, we focus on GARCH time series models with Gaussian innovations and we provide specific sufficient conditions that have to do with the finiteness of the kurtosis, under which those martingale measures are appropriate in the context of quadratic hedging. When this equivalent martingale measure is adapted to the price representation we are able to recover out of it the classical pricing formulas of Duan and Heston-Nandi, as well as hedging schemes that improve the performance of those proposed in the literature.

No associations


Say what you really think

Search for scientists and scientific papers. Rate them and share your experience with other people.


GARCH options via local risk minimization does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with GARCH options via local risk minimization, we encourage you to share that experience with our community. Your opinion is very important and GARCH options via local risk minimization will most certainly appreciate the feedback.

Rate now


Profile ID: LFWR-SCP-O-313841

All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.