Mathematics – Number Theory
Scientific paper
2011-01-23
Mathematics
Number Theory
34 pages, 2 figures. Revised version includes minor changes to sections 3 and 6
Scientific paper
For a number field K with absolute Galois group G_K, we consider the action of G_K on the infinite tree of preimages of a point in K under a degree-two rational function phi, with particular attention to the case when phi commutes with a non-trivial Mobius transfomation. In a sense this is a dynamical systems analogue to the l-adic Galois representation attached to an elliptic curve, with particular attention to the CM case. Using a result about the discriminants of numerators of iterates of phi, we give a criterion for the image of the action to be as large as possible. This criterion is in terms of the arithmetic of the forward orbits of the two critical points of phi. In the case where phi commutes with a non-trivial Mobius transfomation, there is in effect only one critical orbit, and we give a modified version of our maximality criterion. We prove a Serre-type finite-index result in many cases of this latter setting.
Jones Rebecca
Manes Michelle
No associations
LandOfFree
Galois theory of quadratic rational functions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Galois theory of quadratic rational functions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Galois theory of quadratic rational functions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-586647