Mathematics – Category Theory
Scientific paper
2009-09-30
Mathematics
Category Theory
Scientific paper
{\em Galois comodules} over a coring can be characterised by properties of the relative injective comodules. They motivated the definition of {\em Galois functors} over some comonad (or monad) on any category and in the first section of the present paper we investigate the role of the relative injectives (projectives) in this context. Then we generalise the notion of corings (derived from an entwining of an algebra and a coalgebra) to the entwining of a monad and a comonad. Hereby a key role is played by the notion of a {\em grouplike natural transformation} $g:I\to G$ generalising the grouplike elements in corings. We apply the evolving theory to Hopf monads on arbitrary categories, and to comonoidal functors on monoidal categories in the sense of A. Brugui\`{e}res and A. Virelizier. As well-know, for any set $G$ the product $G\times-$ defines an endofunctor on the category of sets and this is a Hopf monad if and only if $G$ allows for a group structure. In the final section the elements of this case are generalised to arbitrary categories with finite products leading to {\em Galois objects} in the sense of Chase and Sweedler.
Mesablishvili Bachuki
Wisbauer Robert
No associations
LandOfFree
Galois functors and entwining structures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Galois functors and entwining structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Galois functors and entwining structures will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-590061