Astronomy and Astrophysics – Astrophysics
Scientific paper
2004-12-26
Phys.Rev.D71:063001,2005
Astronomy and Astrophysics
Astrophysics
16 pages, 9 figures
Scientific paper
10.1103/PhysRevD.71.063001
We show that current surveys have at least as much signal to noise in higher-order statistics as in the power spectrum at weakly nonlinear scales. We discuss how one can use this information to determine the mean of the galaxy halo occupation distribution (HOD) using only large-scale information, through galaxy bias parameters determined from the galaxy bispectrum and trispectrum. After introducing an averaged, reasonably fast to evaluate, trispectrum estimator, we show that the expected errors on linear and quadratic bias parameters can be reduced by at least 20-40%. Also, the inclusion of the trispectrum information, which is sensitive to "three-dimensionality" of structures, helps significantly in constraining the mass dependence of the HOD mean. Our approach depends only on adequate modeling of the abundance and large-scale clustering of halos and thus is independent of details of how galaxies are distributed within halos. This provides a consistency check on the traditional approach of using two-point statistics down to small scales, which necessarily makes more assumptions. We present a detailed forecast of how well our approach can be carried out in the case of the SDSS.
Scoccimarro Roman
Sefusatti Emiliano
No associations
LandOfFree
Galaxy Bias and Halo-Occupation Numbers from Large-Scale Clustering does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Galaxy Bias and Halo-Occupation Numbers from Large-Scale Clustering, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Galaxy Bias and Halo-Occupation Numbers from Large-Scale Clustering will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-24060