Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010spie.7742e...9j&link_type=abstract
High Energy, Optical, and Infrared Detectors for Astronomy IV. Edited by Holland, Andrew D.; Dorn, David A. Proceedings of th
Astronomy and Astrophysics
Astronomy
1
Scientific paper
This paper is a continuation of past papers written on fundamental performance differences of scientific CMOS and CCD imagers. New characterization results presented below include: 1). a new 1536 × 1536 × 8μm 5TPPD pixel CMOS imager, 2). buried channel MOSFETs for random telegraph noise (RTN) and threshold reduction, 3) sub-electron noise pixels, 4) 'MIM pixel' for pixel sensitivity (V/e-) control, 5) '5TPPD RING pixel' for large pixel, high-speed charge transfer applications, 6) pixel-to-pixel blooming control, 7) buried channel photo gate pixels and CMOSCCDs, 8) substrate bias for deep depletion CMOS imagers, 9) CMOS dark spikes and dark current issues and 10) high energy radiation damage test data. Discussions are also given to a 1024 × 1024 × 16 um 5TPPD pixel imager currently in fabrication and new stitched CMOS imagers that are in the design phase including 4k × 4k × 10 μm and 10k × 10k × 10 um imager formats.
Andrews James
Elliott Tom
Grygon Mark
Janesick James
Keller Dave
No associations
LandOfFree
Fundamental performance differences between CMOS and CCD imagers, part IV does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Fundamental performance differences between CMOS and CCD imagers, part IV, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fundamental performance differences between CMOS and CCD imagers, part IV will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-981980