Statistics – Methodology
Scientific paper
2011-04-12
Statistical Science 2010, Vol. 25, No. 4, 506-516
Statistics
Methodology
Published in at http://dx.doi.org/10.1214/10-STS341 the Statistical Science (http://www.imstat.org/sts/) by the Institute of M
Scientific paper
10.1214/10-STS341
It was known from Metropolis et al. [J. Chem. Phys. 21 (1953) 1087--1092] that one can sample from a distribution by performing Monte Carlo simulation from a Markov chain whose equilibrium distribution is equal to the target distribution. However, it took several decades before the statistical community embraced Markov chain Monte Carlo (MCMC) as a general computational tool in Bayesian inference. The usual reasons that are advanced to explain why statisticians were slow to catch on to the method include lack of computing power and unfamiliarity with the early dynamic Monte Carlo papers in the statistical physics literature. We argue that there was a deeper reason, namely, that the structure of problems in the statistical mechanics and those in the standard statistical literature are different. To make the methods usable in standard Bayesian problems, one had to exploit the power that comes from the introduction of judiciously chosen auxiliary variables and collective moves. This paper examines the development in the critical period 1980--1990, when the ideas of Markov chain simulation from the statistical physics literature and the latent variable formulation in maximum likelihood computation (i.e., EM algorithm) came together to spark the widespread application of MCMC methods in Bayesian computation.
Tanner Martin A.
Wong Wing H.
No associations
LandOfFree
From EM to Data Augmentation: The Emergence of MCMC Bayesian Computation in the 1980s does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with From EM to Data Augmentation: The Emergence of MCMC Bayesian Computation in the 1980s, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and From EM to Data Augmentation: The Emergence of MCMC Bayesian Computation in the 1980s will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-731053