Frobenius splitting of cotangent bundles of flag varieties and geometry of nilpotent cones

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

LaTeX (amsart, amsmath, xypic), 14 pages

Scientific paper

We use the G-invariant non-degenerate form on the Steinberg module to Frobenius split the cotangent bundle of a flag variety in good prime characteristics. This was previously only known for the general linear group. Applications are a vanishing theorem for pull back of line bundles to the cotangent bundle (proved for the classical groups and G_2 by Andersen and Jantzen and in characteristic zero by B. Broer (for all groups)), normality and rational singularities for the subregular nilpotent variety and good filtrations of the global sections of pull backs of line bundles to the cotangent bundle, which in turn implies good filtrations of cohomology of induced representations.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Frobenius splitting of cotangent bundles of flag varieties and geometry of nilpotent cones does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Frobenius splitting of cotangent bundles of flag varieties and geometry of nilpotent cones, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Frobenius splitting of cotangent bundles of flag varieties and geometry of nilpotent cones will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-329629

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.