Mathematics – Representation Theory
Scientific paper
2012-04-16
Mathematics
Representation Theory
18 pages; the second version corrects some inaccuracies and adds some material in Section 5; the third version corrects a refe
Scientific paper
Let $W$ be a finite Weyl group and $\sg$ be a non-trivial graph automorphism of $W$. We show a remarkable relation between the $\sg$-twisted involution module for $W$ and the Frobenius--Schur indicators of the unipotent characters of a corresponding twisted finite group of Lie type. This extends earlier results of Lusztig-Vogan for the untwisted case and then allows us to state a general result valid for any finite group of Lie type. Inspired by recent work of Marberg, we also formally define Frobenius--Schur indicators for "unipotent characters" of twisted dihedral groups.
Geck Meinolf
Malle Gunter
No associations
LandOfFree
Frobenius--Schur indicators of unipotent characters and the twisted involution module does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Frobenius--Schur indicators of unipotent characters and the twisted involution module, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Frobenius--Schur indicators of unipotent characters and the twisted involution module will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-7292