Astronomy and Astrophysics – Astronomy
Scientific paper
Aug 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008spie.7020e..58d&link_type=abstract
Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV. Edited by Duncan, William D.; Holland, Wayne S.; W
Astronomy and Astrophysics
Astronomy
Scientific paper
We discuss the development, at Argonne National Laboratory, of a four-pixel camera suitable for photometry of distant dusty galaxies located by Spitzer and SCUBA, and for study of other millimeter-wave sources such as ultra-luminous infrared galaxies, the Sunyaev-Zeldovich (SZ) effect in clusters, and galactic dust. Utilizing Frequency Selective Bolometers (FSBs) with superconducting Transition-Edge Sensors (TESs), each of the camera's four pixels is sensitive to four colors, with frequency bands centered approximately at 150, 220, 270, and 360 GHz. The current generation of these devices utilizes proximity effect superconducting bilayers of Mo/Au or Ti/Au for TESs, along with frequency selective circuitry on membranes of silicon nitride 1 cm across and 1 micron thick. The operational properties of these devices are determined by this circuitry, along with thermal control structures etched into the membranes. These etched structures do not perforate the membrane, so that the device is both comparatively robust mechanically and carefully tailored in terms of its thermal transport properties. In this paper, we report on development of the superconducting bilayer TES technology and characterization of the FSB stacks. This includes the use of new materials, the design and testing of thermal control structures, the introduction of desirable thermal properties using buried layers of crystalline silicon underneath the membrane, detector stability control, and optical and thermal test results. The scientific motivation, FSB design, FSB fabrication, and measurement results are discussed.
Carlstrom John
Chang Clarence
Datesman Aaron
Divan Ralu
Downes Thomas
No associations
LandOfFree
Frequency selective bolometer development at Argonne National Laboratory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Frequency selective bolometer development at Argonne National Laboratory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Frequency selective bolometer development at Argonne National Laboratory will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1061755