Frequency-domain multiplexing for large-scale bolometer arrays

Astronomy and Astrophysics – Astronomy

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We describe the development of a frequency-domain multiplexer (MUX) to read out arrays of superconducting transition-edge sensors (TES). Fabrication of large-format arrays of these sensors is becoming practical; however, reading out each sensor in the array is a major instrumental challenge that is possibly solved by frequency-domain multiplexing. Each sensor is AC biased at a different frequency, ranging from 380 kHz to 1 MHz. The sensor signal amplitude-modulates its respective AC bias frequency. An LC filter associated with each sensor suppresses Johnson noise from the other sensors. The signals are combined at a current summing node and measured by a single superconducting quantum interference device (SQUID). The individual signals from each sensor are then lock-in detected by room temperature electronics. Test chips with fully lithographed LC filters for up to 32 channels have been designed and fabricated. The capacitance and inductance values have been measured and are close to the design goals. We discuss the basic principles of frequency-domain multiplexing, the design and testing of the test chips, and the implementation of a practical system.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Frequency-domain multiplexing for large-scale bolometer arrays does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Frequency-domain multiplexing for large-scale bolometer arrays, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Frequency-domain multiplexing for large-scale bolometer arrays will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-918362

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.