Fractions de Bernoulli-Carlitz et opérateurs q-Zeta

Mathematics – Number Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

6 pages

Scientific paper

We introduce a q-deformation of Dirichlet series : for each s, an operator acting on formal power series in q without constant term. We relate Bernoulli-Carlitz numbers to the q-Riemann Zeta operators for negative integers, evaluated on some polynomials. ----- On introduit une d\'eformation des s\'eries de Dirichlet d'une variable complexe s, sous la forme d'un op\'erateur pour chaque nombre complexe s, agissant sur les s\'eries formelles en une variable q sans terme constant. On montre que les fractions de Bernoulli-Carlitz sont les images de certains polyn\^omes en q par les op\'erateurs associ\'es \`a la fonction ? de Riemann aux entiers n\'egatifs.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Fractions de Bernoulli-Carlitz et opérateurs q-Zeta does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Fractions de Bernoulli-Carlitz et opérateurs q-Zeta, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fractions de Bernoulli-Carlitz et opérateurs q-Zeta will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-386167

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.