Mathematics – Analysis of PDEs
Scientific paper
2006-01-29
Mathematics
Analysis of PDEs
Scientific paper
Nonlinear and nonlinear evolution equations of the form $u_t=\L u \pm|\nabla u|^q$, where $\L$ is a pseudodifferential operator representing the infinitesimal generator of a L\'evy stochastic process, have been derived as models for growing interfaces in the case when the continuous Brownian diffusion surface transport is augmented by a random hopping mechanism. The goal of this paper is to study properties of solutions to this equation resulting from the interplay between the strengths of the "diffusive" linear and "hyperbolic" nonlinear terms, posed in the whole space $\bbfR^N$, and supplemented with nonnegative, bounded, and sufficiently regular initial conditions.
Karch Grzegorz
Woyczynski Wojbor A.
No associations
LandOfFree
Fractal Hamilton-Jacobi-KPZ equations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Fractal Hamilton-Jacobi-KPZ equations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fractal Hamilton-Jacobi-KPZ equations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-14342