Mathematics – Probability
Scientific paper
2012-02-12
Mathematics
Probability
19 pages
Scientific paper
In 2005, Nualart and Peccati showed the so-called Fourth Moment Theorem asserting that, for a sequence of normalized multiple Wiener-It\^o integrals to converge to the standard Gaussian law, it is necessary and sufficient that its fourth moment tends to 3. A few years later, Kemp et al. extended this theorem to a sequence of normalized multiple Wigner integrals, in the context of the free Brownian motion. The q-Brownian motion, q in (-1,1], introduced by the physicists Frisch and Bourret in 1970 and mathematically studied by Bozejko and Speicher in 1991, interpolates between the classical Brownian motion (q=1) and the free Brownian motion (q=0), and is one of the nicest examples of non-commutative processes. The question we shall solve in this paper is the following: what does the Fourth Moment Theorem become when dealing with a q-Brownian motion?
Deya Aurélien
Noreddine Salim
Nourdin Ivan
No associations
LandOfFree
Fourth Moment Theorem and q-Brownian Chaos does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Fourth Moment Theorem and q-Brownian Chaos, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fourth Moment Theorem and q-Brownian Chaos will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-371715