Astronomy and Astrophysics – Astronomy
Scientific paper
May 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002aas...200.0708c&link_type=abstract
American Astronomical Society, 200th AAS Meeting, #07.08; Bulletin of the American Astronomical Society, Vol. 34, p.651
Astronomy and Astrophysics
Astronomy
1
Scientific paper
Simon's (1989, ApJ, 343, L17) Fourier decomposition technique has been applied to the V magnitudes of the first-overtone RR Lyrae (RR1) variables in 16 LMC fields observed by the MACHO collaboration. The Fourier coefficients R21 and φ 31 derived for these stars have been compared with the coefficients of RR1 variables in the galactic globular clusters Omega Centauri, M2, M3, M5, M68, M107 (NGC 6171) and NGC 6441. Our analysis indicates that the majority of the LMC RR1 variables have coefficients similar to those in the Oosterhoff type I (OoI) clusters M3 and M5 and to the OoI variables in Omega Centauri. In a study of hydrodynamic pulsation models of first overtone RR Lyrae variables, Simon & Clement (1993, ApJ, 410, 526) found that the Fourier phase parameter φ 31 depends essentially on mass and luminosity. From this, we conclude that the masses and luminosities of most of the RR1 variables in the LMC are comparable to those of the OoI RR1 variables in Omega Centauri, M3 and M5, a fact that should be considered when RR Lyrae variables are used for determining the distance to the LMC. The MACHO collaboration includes C. Alcock, R. A. Allsman, D. R. Alves, T. S. Axelrod, A. C. Becker, D. P. Bennet, K. H. Cook, A. J. Drake, K. C. Freeman, M. Geha, K. Griest, M. J. Lehner, S. L. Marshall, D. Minniti, C. A. Nelson, B. A. Peterson, P. Popowski, M. R. Pratt, P. J. Quinn, C. W. Stubbs, W. Sutherland, T. Vandehel and D. L. Welch. This research has been supported in part by the Natural Sciences and Engineering Research Council of Canada.
Clement Christine M.
MACHO Collaboration
Muzzin A. V.
Rowe F. Jr. J.
No associations
LandOfFree
Fourier Analysis of First-Overtone RR Lyrae Variables in the LMC does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Fourier Analysis of First-Overtone RR Lyrae Variables in the LMC, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fourier Analysis of First-Overtone RR Lyrae Variables in the LMC will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1717205