Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics
Scientific paper
2012-02-29
Astronomy and Astrophysics
Astrophysics
Cosmology and Extragalactic Astrophysics
Accepted for publication in Astrophysics & Space Science
Scientific paper
One of the fundamental problems in extracting the cosmic microwave background signal (CMB) from millimeter/submillimeter observations is the pollution by emission from the Milky Way: synchrotron, free-free, and thermal dust emission. To extract the fundamental cosmological parameters from CMB signal, it is mandatory to minimize this pollution since it will create systematic errors in the CMB power spectra. In previous investigations, it has been demonstrated that the neural network method provide high quality CMB maps from temperature data. Here the analysis is extended to polarization maps. As a concrete example, the WMAP 7-year polarization data, the most reliable determination of the polarization properties of the CMB, has been analysed. The analysis has adopted the frequency maps, noise models, window functions and the foreground models as provided by the WMAP Team, and no auxiliary data is included. Within this framework it is demonstrated that the network can extract the CMB polarization signal with no sign of pollution by the polarized foregrounds. The errors in the derived polarization power spectra are improved compared to the errors derived by the WMAP Team.
No associations
LandOfFree
Foreground removal from WMAP 7yr polarization maps using an MLP neural network does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Foreground removal from WMAP 7yr polarization maps using an MLP neural network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Foreground removal from WMAP 7yr polarization maps using an MLP neural network will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-524173