Statistics – Applications
Scientific paper
2008-11-11
Annals of Applied Statistics 2008, Vol. 2, No. 3, 808-840
Statistics
Applications
Published in at http://dx.doi.org/10.1214/08-AOAS187 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Ins
Scientific paper
10.1214/08-AOAS187
For obtaining causal inferences that are objective, and therefore have the best chance of revealing scientific truths, carefully designed and executed randomized experiments are generally considered to be the gold standard. Observational studies, in contrast, are generally fraught with problems that compromise any claim for objectivity of the resulting causal inferences. The thesis here is that observational studies have to be carefully designed to approximate randomized experiments, in particular, without examining any final outcome data. Often a candidate data set will have to be rejected as inadequate because of lack of data on key covariates, or because of lack of overlap in the distributions of key covariates between treatment and control groups, often revealed by careful propensity score analyses. Sometimes the template for the approximating randomized experiment will have to be altered, and the use of principal stratification can be helpful in doing this. These issues are discussed and illustrated using the framework of potential outcomes to define causal effects, which greatly clarifies critical issues.
No associations
LandOfFree
For objective causal inference, design trumps analysis does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with For objective causal inference, design trumps analysis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and For objective causal inference, design trumps analysis will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-543218