Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2012-02-24
The Astrophysical Journal (2012), 750, 22
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
Accepted for publication in the Astrophysical Journal. 13 pages, 10 figures, see http://folk.uio.no/gregal/onlinematerial/floc
Scientific paper
High-quality imaging spectroscopy in the H{\alpha} line, obtained with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) at La Palma and covering a small sunspot and its surroundings, are studied. They exhibit ubiquitous flows both along fibrils making up the chromospheric canopy away from the spot and in the superpenumbra. We term these flows "flocculent" to describe their intermittent character, that is morphologically reminiscent of coronal rain. The flocculent flows are investigated further in order to determine their dynamic and morphological properties. For the measurement of their characteristic velocities, accelerations and sizes, we employ a new versatile analysis tool, the CRisp SPectral EXplorer (CRISPEX), which we describe in detail. Absolute velocities on the order of 7.2-82.4 km/s are found, with an average value of 36.5\pm5.9 km/s and slightly higher typical velocities for features moving towards the sunspot than away. These velocities are much higher than those determined from the shift of the line core, which shows patches around the sunspot with velocity enhancements of up to 10-15 km/s (both red- and blueshifted). Accelerations are determined for a subsample of features, that show clear accelerating or decelerating behavior, yielding an average of 270\pm63 m/s^2 and 149\pm63 m/s^2 for accelerating and decelerating features, respectively. Typical flocculent features measure 627\pm44 km in length and 304\pm30 km in width. On average 68 features are detected per minute, with an average lifetime of 67.7\pm8.8 s. The dynamics and phenomenology of the flocculent flows suggest they may be driven by a siphon flow, where the flocculence could arise from a density perturbation close to one of the footpoints or along the loop structure.
der Voort Luc Rouppe van
Vissers Gregal
No associations
LandOfFree
Flocculent flows in the chromospheric canopy of a sunspot does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Flocculent flows in the chromospheric canopy of a sunspot, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flocculent flows in the chromospheric canopy of a sunspot will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-78705